#### Inventory Management at the Next Level

Dr. Charles R. Hurburgh, Jr. Professor, Agricultural and Biosystems Engineering Iowa State University Extension

GE 2015



Copyright © 2015 Iowa State University

# **Learning Objectives**

#### Weight:

Quantity in – Dockage\* = Quantity out – Dockage – Cleanings – Shrink

#### Quality (discount):

#### Quality in \* Discount > Quality out \* Discount AKA: Q and Q

\*Dockage factors are subtracted from weight



# **Learning Objectives**

1. Learn the Operations that Affect Inventory

- \* Grading and inspection Q and Q
- \* Shrink (several causes) Quantity
- \* Deterioration

E 2015

- Q and Q
- 2. Understand Connection of Inventory Balance to Net Profit

Inventory management means keeping track of everything from inbound to outbound.



New – 149 mHz

# **Inbound Grading**



New – 149 mHz

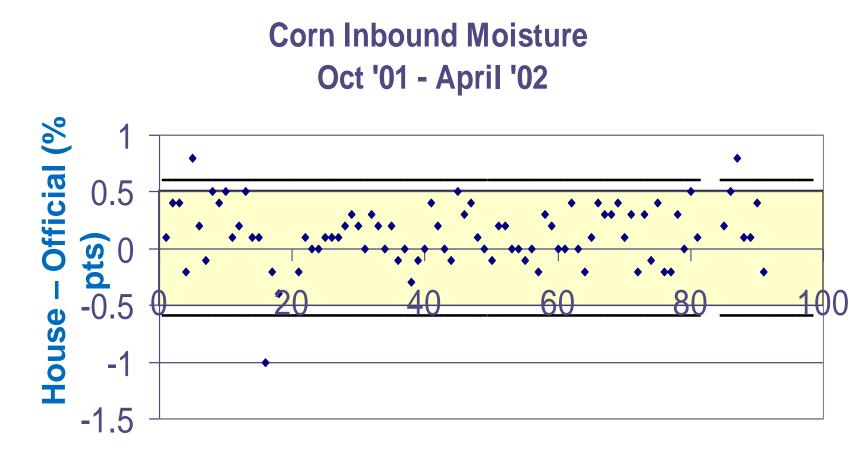


Old – 2 mHz



E 2015

Moisture

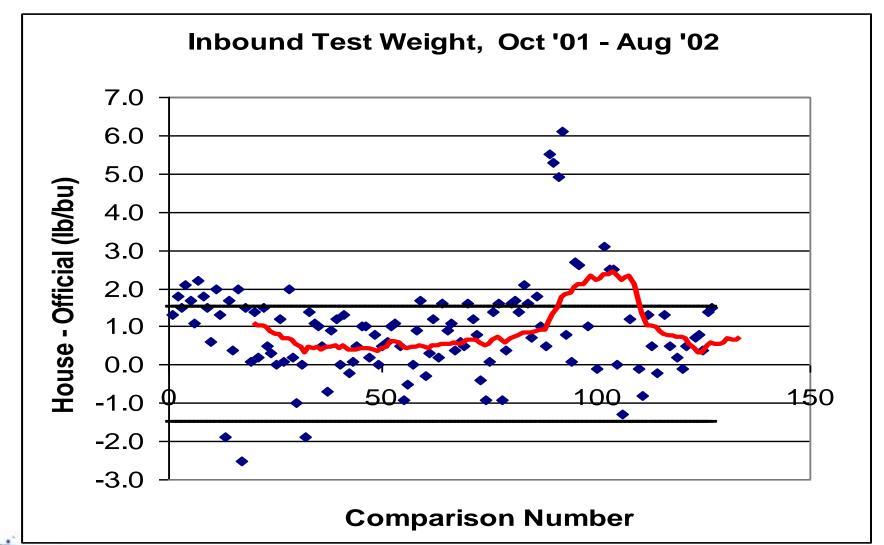

- 1% Moisture = 5 12 cents/bu
- Be within +/- 0.3% vs GIPSA
- Check more than just once a year
- Differences between new and old technologies.
- Test Weight Cup or Meter TW
   1 lb/bu = 1.5% measurement error

- +/- 0.5 lb/bu vs GIPSA

– Cup? Training or worse than meter!

Quantity for sure; Quality for sure

#### Control Chart Example – Corn Moisture 95% confidence = +/- 2 std. dev.




E 2015

#### **Comparison Number**



#### **Control Chart Example – Corn Test Wt.**



E 2015

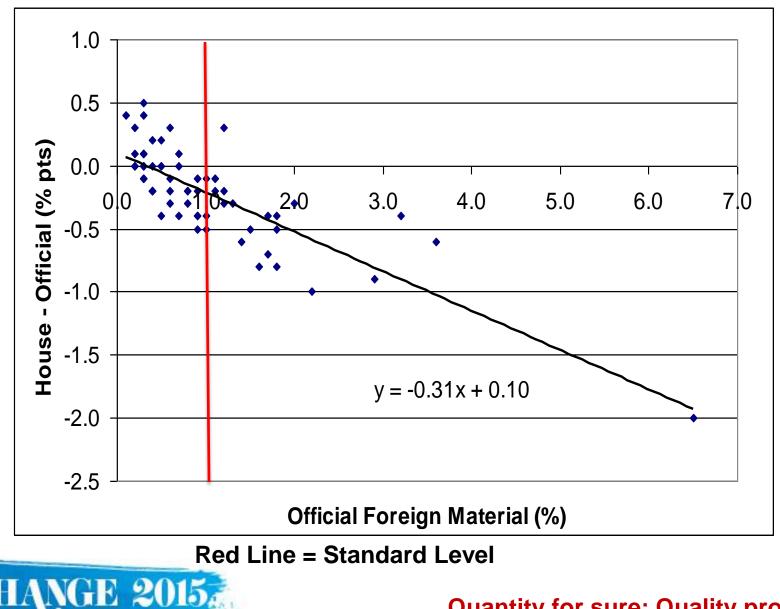
Quantity in Measurement; Quality for



# **Inbound Grading**

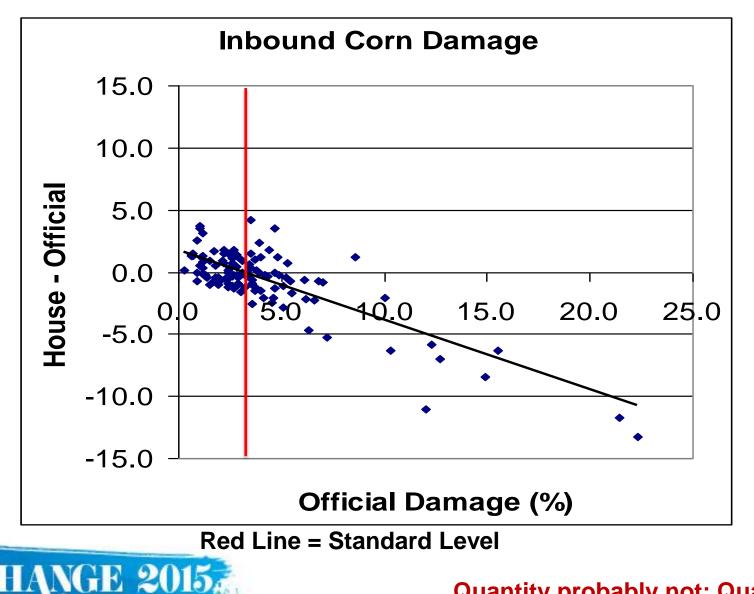


#### Particle Size or Count Based Factors


Must use a divider on samples. Sampling is importan. Check the divider periodically by weight on each side. Compare 5-10 samples vs GIPSA; +/-0.2 – 0.5% depending

on level.

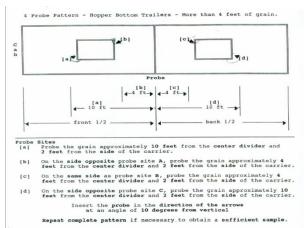



Quantity for sure ; Quality for sure

#### **Control Chart Example - Soybean FM**



Quantity for sure; Quality probably


#### **Control Chart Example - Corn Damage**



Quantity probably not; Quality for

#### **Sampling and Sample Handling**

 Have a written and consistent protocol for sampling and sample handling.



- Factors to be mechanically divided
  - FM or any other particle size based factor
  - Stones, toxins, GMO, Damage or any count factor
- Factors less prone to division error
  - Moisture

E 2015,

- Protein, other composition factors

Quantity for sure; Quality for sure

#### Shrink

### Shrink = Water (dryer) + Operating Losses

Water Loss

Percent of weight lost per % moisture removed

Operating Loss Impacts Handling loss material loss

Moisture measurement miscalculation

Deterioration spoilage Aeration below spec<sup>Quantity for sure; Qgittleif and a yr brok</sup>

#### **Shrink Factors**

$$W_o - W_f = (\frac{s}{100})(M_0 - M_s)(W_o)$$

where: s = shrink factor, percent loss in weight per percent moisture $<math>M_s = shrink (final) moisture content (\%)$   $W_{o,} M_o = initial weight, moisture content (\%)$  $W_f = final weight$ 

Common s values: 1.30 – 1.50 % loss per % moisture

| Water Loss only: | Ms | S     | Typical use  |
|------------------|----|-------|--------------|
|                  | 12 | 1.136 | wheat        |
|                  | 13 | 1.149 | soybeans     |
|                  | 14 | 1.162 | corn storage |
|                  | 15 | 1.176 | corn market  |

Only final moisture changes water loss rate.

GE 2015,

Not starting moisture, not grain type, not grain quality!!

Quantity for sure; Quality

#### **Operating Losses**

- Lost kernels, dust, increased FM
- Some Estimates (based on corn):
  - 0.5% (0.005) weight loss per in out. Out to Pile counts double. Progressive if multiple turns.
  - 0.2% FM Increase per rotation (15% corn); 0.4% if 13%, etc. More with dryer stress cracks or low Test Weight (2x below 52 lb/bu)
  - Cleaning if needed.
- Moisture error: Buyer reads high=you dry more.
- Individual facility specific! Measure them.
- Grade your grain periodically during handling
  - In-Process grading

GE 2015,

Quantity for sure; Quality lik

#### Cleaning

- Cleaning shrink = Amount of cleanings removed.
- Take this on your physical inventory, then:
- Analyze screenings for true FM vs. grain.
- Grain loss (economic) is the difference in price of grain and screenings.
- FM loss is in two parts:

GE 2015,

1) What you could have blended out and:

2) what you could not blend out.

Quantity for sure; Quality for s

| Cleaning Example          |             |              |       |  |  |  |  |  |  |
|---------------------------|-------------|--------------|-------|--|--|--|--|--|--|
| Physical Inventory        |             |              |       |  |  |  |  |  |  |
|                           | Weight (bu) | %FM          | %Corn |  |  |  |  |  |  |
| In                        | 1,000,000   | 3.0 (graded) | 97.0  |  |  |  |  |  |  |
| Cleaned                   | 50,000      | 50.0         | 50.0  |  |  |  |  |  |  |
| Out                       | 950,000     | 4.0 (graded) | 96.0  |  |  |  |  |  |  |
| Contract = 3YC, Max 5% FM |             |              |       |  |  |  |  |  |  |

| <u>Economic</u> | Balance (se | creenings =70% of corn price) |
|-----------------|-------------|-------------------------------|
| Lost corn       | 25,000      | 2.5%*30% = 0.75%              |
| FM removed      | 25,000      | 2.5%*30% = 0.75%              |
| Lost Blend      | 9,500       | (5% - 4% actual)              |
| Not Blendable   | e 15,500    | (0.47%)                       |

FM Created: 25,000 + 38,000 - 30,000 = 33,000 (3.3%) EXCLLAGE removed + sold - bought = created Quantity for sure; Quality for s

#### **Deterioration: Storage Life**

#### Maximum storage time (months); corn and soybeans\*

| Temperature<br>° F | 13%,<br>11% | 14%,<br>12% | 15%,<br>13% | 16%,<br>14% | 17%,<br>15% | 18%,<br>16% | 24%<br>N/A |
|--------------------|-------------|-------------|-------------|-------------|-------------|-------------|------------|
| 40                 | 150         | 61          | 29.0        | 15.0        | 9.4         | 6.1         | 1.3        |
| 50                 | 84          | 34          | 16.0        | 8.9         | 5.3         | 3.4         | 0.5        |
| 60                 | 47          | 19          | 9.2         | 5.0         | 3.0         | 1.9         | 0.3        |
| 70                 | 26          | 11          | 5.2         | 2.8         | 1.7         | 1.1         | 0.2        |
| 80                 | 15          | 6           | 2.9         | 1.6         | 0.9         | 0.9         | 0.06       |

\*Based on 0.5% maximum dry matter loss—calculated on the basis of USDA research at Iowa State University. Corresponds to one grade number loss; 2-3% pts of Total Damaged seeds

E **2015**,

Starts at harvest with 100%.

Progressively used up through the storage season Quantity for sure; Quality for s

#### **Storage Life Principles**

- Grain is converted to carbon dioxide and water; heat is generated.
- Starts at 100%; percentages are used up at each condition.
  - eg. 1 day at 80F for 24% corn uses 50% life.3 months at 40F for 18% corn uses 50% life.
- Self-reducing if no aeration

E 2015,

0.5% weight loss for each 3% DKT increase.
– eg 3% DKT to 12% DKT = (9/3)\*0.5=1.5% shrink
– Verify with in-process grading

#### **Aeration and Shrink**

- Beyond cooling cycles, aeration is a balance between spoilage and shrink
- If the Equilibrium Moisture Content is below the grain moisture, aeration will remove moisture.
- Spring/summer is the likely time for overdrying, not fall/winter.



|                   | Corn Equilibrium Moisture Content |      |      |      |      |      |      |      |      |      |      |      |      |
|-------------------|-----------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Relative Humidity |                                   |      |      |      |      |      |      |      |      |      |      |      |      |
| Temperature       | 30%                               | 35%  | 40%  | 45%  | 50%  | 55%  | 60%  | 65%  | 70%  | 75%  | 80%  | 85%  | 90%  |
| 35°               | 11.0                              | 11.6 | 12.3 | 12.9 | 13.5 | 14.2 | 14.8 | 15.6 | 16.3 | 17.2 | 18.2 | 19.5 | 21.1 |
| 40°               | 10.6                              | 11.3 | 11.9 | 11.9 | 13.1 | 13.8 | 14.5 | 15.2 | 16.0 | 16.9 | 17.9 | 19.1 | 20.8 |
| 45°               | 10.2                              | 10.9 | 11.5 | 11.5 | 12.8 | 13.5 | 14.1 | 14.9 | 15.7 | 16.6 | 17.6 | 18.8 | 20.5 |
| 50°               | 9.9                               | 10.6 | 11.2 | 11.2 | 12.5 | 13.1 | 13.8 | 14.6 | 15.4 | 16.3 | 17.3 | 18.6 | 20.2 |
| 55°               | 9.6                               | 10.2 | 10.9 | 10.9 | 12.2 | 12.8 | 13.5 | 14.3 | 15.1 | 16.0 | 17.0 | 18.3 | 20.0 |
| 60°               | 9.3                               | 9.9  | 10.6 | 10.6 | 11.9 | 12.6 | 13.3 | 14.0 | 14.8 | 15.7 | 16.8 | 18.1 | 19.7 |
| 65°               | 9.0                               | 9.7  | 10.3 | 10.3 | 11.6 | 12.3 | 13.0 | 13.8 | 14.6 | 15.5 | 16.5 | 17.8 | 19.5 |
| 70°               | 8.7                               | 9.4  | 10.0 | 10.0 | 11.4 | 12.0 | 12.7 | 13.5 | 14.3 | 15.3 | 16.3 | 17.6 | 19.3 |
| 75°               | 8.5                               | 9.1  | 9.8  | 9.8  | 11.1 | 11.8 | 12.5 | 13.3 | 14.1 | 15.0 | 16.1 | 17.4 | 19.1 |
| 80°               | 8.2                               | 8.9  | 9.6  | 9.6  | 10.9 | 11.6 | 12.3 | 13.1 | 13.9 | 14.8 | 15.9 | 17.2 | 18.9 |

# Mold Line. Overdry line Soybean Equilibrium Moisture Content

| Relative Humidity |          |     |         |         |          |      |      |      |      |      |      |      |      |
|-------------------|----------|-----|---------|---------|----------|------|------|------|------|------|------|------|------|
| Temperature       | 30%      | 35% | 40%     | 45%     | 50%      | 55%  | 60%  | 65%  | 70%  | 75%  | 80%  | 85%  | 90%  |
| 35°               | 6.6      | 7.5 | 8.3     | 9.1     | 9.9      | 10.8 | 11.7 | 12.6 | 13.7 | 14.8 | 16.1 | 17.7 | 19.7 |
| 40°               | 6.4      | 7.3 | 8.1     | 8.9     | 9.8      | 10.6 | 11.5 | 12.5 | 13.5 | 14.6 | 16.0 | 17.5 | 19.6 |
| 45°               | 6.3      | 7.1 | 8.0     | 8.8     | 9.6      | 10.5 | 11.4 | 12.3 | 13.4 | 14.5 | 15.8 | 17.4 | 19.5 |
| 50°               | 6.1      | 7.0 | 7.8     | 8.6     | 9.5      | 10.3 | 11.2 | 12.2 | 13.2 | 14.4 | 15.7 | 17.3 | 19.4 |
| 55°               | 5.9      | 6.8 | 7.7     | 8.5     | 9.3      | 10.2 | 11.1 | 12.1 | 13.1 | 14.2 | 15.6 | 17.2 | 19.2 |
| 60°               | 5.8      | 6.7 | 7.5     | 8.3     | 9.2      | 10.1 | 11.0 | 11.9 | 13.0 | 14.1 | 15.4 | 17.0 | 19.1 |
| 65°               | 5.6      | 6.5 | 7.4     | 8.2     | 9.0      | 9.9  | 10.8 | 11.8 | 12.8 | 14.0 | 15.3 | 16.9 | 19.0 |
| 70°               | 5.5      | 6.4 | 7.2     | 8.1     | 8.9      | 9.8  | 10.7 | 11.7 | 12.7 | 13.9 | 15.2 | 16.8 | 18.9 |
| 75°               | 5.3      | 6.2 | 7.1     | 7.9     | 8.8      | 9.7  | 10.6 | 11.5 | 12.6 | 13.7 | 15.1 | 16.7 | 18.8 |
| 80°               | 5.2      | 6.1 | 6.9     | 7.8     | 8.6      | 9.5  | 10.4 | 11.4 | 12.5 | 13.6 | 15.0 | 16.6 | 18.7 |
| Average Octob     | er, Iowa |     | Average | e Novem | ber, low | а    |      |      |      |      |      |      |      |

#### **Cost of Overdrying**

| Moisture content       | Price of Corn (\$/bu) |         |         |         |         |         |  |  |  |  |  |
|------------------------|-----------------------|---------|---------|---------|---------|---------|--|--|--|--|--|
| of overdry corn<br>(%) | \$2.00                | \$2.50  | \$3.00  | \$4.00  | \$5.00  | \$6.00  |  |  |  |  |  |
| 14                     | \$0.023               | \$0.029 | \$0.035 | \$0.047 | \$0.058 | \$0.070 |  |  |  |  |  |
| 13                     | \$0.046               | \$0.057 | \$0.069 | \$0.092 | \$0.116 | \$0.138 |  |  |  |  |  |
| 12                     | \$0.068               | \$0.085 | \$0.102 | \$0.136 | \$0.170 | \$0.204 |  |  |  |  |  |
| 11                     | \$0.090               | \$0.112 | \$0.135 | \$0.180 | \$0.224 | \$0.270 |  |  |  |  |  |
| 10                     | \$0.111               | \$0.139 | \$0.167 | \$0.222 | \$0.278 | \$0.334 |  |  |  |  |  |

Top line is the cost for one percentage point. At \$4.00/bu, \$47,000 per million bu

What about \$10 - \$14 soybeans?



Quantity for sure; Quality r

#### A Cost Example: Pile Corn

- 1.5 Million Bushel pile; \$4.00/bu
- Bu Moist DKT TW • In 1,500,000 19.0% 3% 56
- <u>Out 1,420,000 18.5% 35% 53</u>
- Lost 80,000 0.5% 32% 3

Then had to dry to 13% to keep the damaged corn



Quantity for sure; Quality for s

#### **Corn Loss Calculation**

| DM Shrink Loss           | Real    | \$<br>283,190   |
|--------------------------|---------|-----------------|
| DKT Discounts            | Pending | \$<br>1,350,000 |
| Lost MC Blending         | Likely  | \$<br>233,882   |
| Extra MC Shrink          | Pending | \$<br>125,198   |
| Extra Transportation     | Likely  | \$<br>136,320   |
| Lost Storage Opportunity | Likely  | \$<br>340,800   |
| Extra Handling Loss      | Real    | \$<br>28,400    |
| Interest                 | Real    | \$<br>340,800   |
|                          |         | \$<br>2,838,591 |

#### \$3.3 million if \$6.00 corn Estimated Shrink Losses: \$670,670

NGE 2015<sub>4</sub>

Quantity for sure; Quality for s

#### Summary

- Step by step analysis of sources for inventory losses.
  - Inbound Inspection
  - Dryer/moisture measurement
  - Handling and cleaning
  - Deterioration
  - Aeration
- In many cases, internal weighing and grading (in process analysis) will be very valuable.



#### Where To Find Us...



HE 2015

# 



Copyright © 2015 Iowa State University